QBC Summer 2024 **Final** Presentation

Emma Archambault, Courtney Swenson, Reuven Frye and Sydney Ulland

Oyster Farming

Tasks:

- Tumbling→ promote growth
- Cage flipping → reduce biofoul
- Harvesting
- Maintain the farm
- Outreach

Why do we farm Oysters?

- They help water quality
- Proceeds fund QBC

Oyster Condition Index

- Weigh wet and dry shell and meat
- Measure length and width
- Compare health at Snow Island and Dogs Head sites

Oyster Condition Index

Aquaponics

• A closed looped system combining aquaculture and hydroponics

- Sustainable
- Food Security

Pump Out Service

6

 This summer we pumped a total of 23 boats

 630 gallons of waste

 Funded by the State

Water Quality Monitoring What we measure:

- Turbidity
- Depth
- Temperature
- Conductivity
- Salinity
- pH
- Dissolved oxygen
- Water samples (E.Coli)

Why we care: Observe trends over time in Casco Bay

 Understand how E.Coli is changing

Green Crab Removal

We removed over **2,121** pounds of invasive Green Crabs from Quahog Bay to be used as compost in our community!

Trash Removal

Common trash in the bay:

- Old traps and buoys
- Dock debris
- Fishing gear
- Plastics
- Rope
- Styrofoam
- Bottles & cans
- Party balloons

- Becomes Microplastics
- Affects aquatic and terrestrial animals
- Blocks water systems

Thanks to Casco Bay Estuary Partnership for funding our trash clean up efforts!

Science Communication

- Visual and Written Storytelling
- Know your audience: a panel
- Career building skills
- Identifying and dealing with misinformation

•••		.••
		•
••	••••	(

Gulf of Maine Research Institute

Science. Education. Community.

Dave Berndtson

Casco Bay Aquatic Systems Survey (CBASS)

Field Trips Merrymeeting Shellfish

Wolfe's Neck

Woods Hole Oceanographic Institution

Field Trips with Dr. Walt Golet

Shark Tagging

Tuna Dissection

Individual Projects

Ecotoxicological Impacts of Dicamba and Sulfur on Marine Microalgae Tetraselmis spp.

How does presence of dicamba and sulfur pesticides and herbicides affect algae growth and mortality?

Emma Archambault

Methods

- Prepare 4 treatments: 1 ppb dicamba, 10 ppb dicamba, 100 ppb dicamba, 10 ppb sulfur
- Count total and immobile cells using a hemocytometer get cells per mL →count/4 × 10,000 cells/mL

- Find ratio of growth to mortality over time to measure population growth or decline
- Conduct initial observation, then three more at 18-26 hour intervals for 3 trials

Results

Why did we see these results?

- Dicamba inhibits growth in terrestrial plants
- Too low of concentrations to see a result

Why does this matter?

- Higher concentrations and chronic exposure in nature
- Increased popularity and usage of agricultural chemicals
- increased rainfall and runoff into water

Ecotoxicological Effects of Roundup Herbicide on the Hatching Success and Naupliar Survival of *Acartia* spp.

How does Dicamba at different concentrations affect **hatching success** and **naupliar survival** of *Acartia* spp.?

Sydney Ulland

Methods

- 4 concentrations (0, 1, 10, 100 ppb) of Dicamba (from Roundup for Lawns)
 o Friends of Casco Bay 2003 Study
- Dock and boat tows
- Egg hatching success monitored
 - Hatched nauplii
- Nauplii survival monitored
 Motor function
- Statistical analysis of data
 - R Statistical Software

Results

Why is this important?

- Herbicides are common
 Runoff is entering marine ecosystems
 - More common with storm events, flooding, sea level rise, and erosion
- Contamination is affecting organisms
- Potentially impacts food production and economic activities in coastal communities

Temperature Effects on Hatching Success and Respiratory Rate of *Acartia spp.* (Copepoda: Calanoida) in Quahog Bay, Maine

- Sea surface temperature is increasing
- Acartia spp. are sensitive to environmental conditions
- Essential prey species within the Gulf of Maine

Reuven Frye

Temperature

• 16°C and 20°C

Hatching Success

- Counted number of non-hatched eggs, hatched eggs, and nauplii
- Observed over 96 hours

Respiratory Rate

- Used a respirometer
- Calculated as change in oxygen saturation between (10pm - 4am)

Methods

Results

Why is it important?

Growth Rates of Atlantic Herring and Atlantic Silverside in Response to Temperature Changes on the Gulf of Maine

How do **warm-adapted** species react to warming waters, and is this similar to **cold-adapted** species?

Courtney Swenson

Methods

- Divide into "warm" and "cool" summers
- Averaged weekly length
- Generalized linear model
- Compare growth rates

Results

Why Did We See These Results?

- Life Cycle Differences
- Migration
- Spatio-Temporal Mismatch

Why Does This Matter?

 Food web composition shift

- Bottom-up effect
- Economic impact

T

THANK YOU!!!

For a great summer :)

